# C. U. SHAH UNIVERSITY Winter Examination-2018

## Subject Name: Spectroscopic Techniques

| Subject Code: 5SC04 | 4STC1            | Branch: M.Sc. (Chemistry) |           |
|---------------------|------------------|---------------------------|-----------|
| Semester: 4         | Date: 23/10/2018 | Time: 10:30 To 01:30      | Marks: 70 |

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

|    | Attempt the following questions                                                                                                                | (07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) | What is called non-equivalent protons?                                                                                                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b) | Define: Wave number and Frequency                                                                                                              | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) | Give the wavelength range for UV-Visible Spectroscopy.                                                                                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| d) | Define: Chemical shift                                                                                                                         | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e) | Define: Spectroscopy                                                                                                                           | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| f) | What do you mean by COSY and HETCOSY?                                                                                                          | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| g) | Draw the <sup>1</sup> H-NMR spectrum of 1, 1-dibromoethane.                                                                                    | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | Attempt all questions                                                                                                                          | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a) | Explain the various shifts in UV-Visible spectroscopy.                                                                                         | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b) | Explain the theory of molecular vibrations.                                                                                                    | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | OR                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Attempt all questions                                                                                                                          | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a) | Explain the electronic transitions in UV-Visible Spectroscopy.                                                                                 | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b) | Explain the Instrumentation of UV-Visible Spectroscopy.                                                                                        | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | Attempt all questions                                                                                                                          | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a) | Explain CW-NMR [Continuous Wave] instrumentation in NMR spectroscopy.                                                                          | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b) | Explain the chemical shift in <sup>1</sup> H-NMR spectroscopy.                                                                                 | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | <ul> <li>a)</li> <li>b)</li> <li>c)</li> <li>d)</li> <li>e)</li> <li>f)</li> <li>g)</li> <li>a)</li> <li>b)</li> <li>a)</li> <li>b)</li> </ul> | <ul> <li>Attempt the following questions</li> <li>a) What is called non-equivalent protons?</li> <li>b) Define: Wave number and Frequency</li> <li>c) Give the wavelength range for UV-Visible Spectroscopy.</li> <li>d) Define: Chemical shift</li> <li>e) Define: Spectroscopy</li> <li>f) What do you mean by COSY and HETCOSY?</li> <li>g) Draw the <sup>1</sup>H-NMR spectrum of 1, 1-dibromoethane.</li> <li>Attempt all questions</li> <li>a) Explain the various shifts in UV-Visible spectroscopy.</li> <li>b) Explain the electronic transitions in UV-Visible Spectroscopy.</li> <li>b) Explain the electronic transitions in UV-Visible Spectroscopy.</li> <li>b) Explain the Instrumentation of UV-Visible Spectroscopy.</li> <li>b) Explain the chemical shift in <sup>1</sup>H-NMR spectroscopy.</li> <li>b) Explain the chemical shift in <sup>1</sup>H-NMR spectroscopy.</li> </ul> |



| Q-3 |    | Attempt all questions                                                            | (14) |
|-----|----|----------------------------------------------------------------------------------|------|
|     | a) | Write a note on spin-spin coupling or splitting of signal in <sup>1</sup> H-NMR. | 05   |
|     | b) | Explain the shielding and deshielding of proton in NMR.                          | 05   |
|     | c) | Explain coupling constant (J).                                                   | 04   |

## SECTION – II

| Q-4 |            | Attempt the fo                                      | llowing question     | IS                                                                |  |  |  |
|-----|------------|-----------------------------------------------------|----------------------|-------------------------------------------------------------------|--|--|--|
| -   | a)         | Give the genera                                     | l energy absorpti    | on range for <sup>13</sup> C-NMR spectroscopy.                    |  |  |  |
|     | b)         | What do you m                                       | eant by molecula     | r ion peak?                                                       |  |  |  |
|     | c)         | Why ${}^{13}C-{}^{13}C$ co                          | oupling is neglible  | e or not observed?                                                |  |  |  |
|     | d)         | What is called I                                    | DEPT-NMR?            |                                                                   |  |  |  |
|     | e)         | What is the ${}^{13}C$                              | -NMR range for o     | carbonyl carbon atom?                                             |  |  |  |
|     | f)         | Define the term                                     | : Mass analyzer.     | 5                                                                 |  |  |  |
|     | <b>g</b> ) | What is called b                                    | base peak in mass    | s spectrometry?                                                   |  |  |  |
| Q-5 |            | Attempt all qu                                      | estions              |                                                                   |  |  |  |
|     | a)         | Explain the principle of mass spectrometry.         |                      |                                                                   |  |  |  |
|     | b)         | ) Explain the instrumentation of mass spectrometry. |                      |                                                                   |  |  |  |
|     |            | -                                                   |                      | OR                                                                |  |  |  |
| Q-5 |            | Attempt all qu                                      | estions              |                                                                   |  |  |  |
|     | a)         | Explain ion inle                                    | et system and qua    | drupole mass analyzer.                                            |  |  |  |
|     | b)         | Explain electron                                    | n impact ionizatio   | on and chemical ionization techniques.                            |  |  |  |
| Q-6 |            | Attempt all qu                                      | estions              |                                                                   |  |  |  |
|     | a)         | Organic compo                                       | und having mole      | cular formula $C_9H_{10}O_2$ exhibit the following spectral data. |  |  |  |
|     |            | Deduced the str                                     | ructure of the con   | npounds.                                                          |  |  |  |
|     |            | IR $(cm^{-1})$                                      | UV ( $\lambda$ , nm) | <sup>1</sup> H-NMR ( $\delta$ , ppm)                              |  |  |  |
|     |            | 1745, 1225,                                         | 268, 264, 262        | 1.9 (3H, Triplet), 9.0 (2H, Quartet), 7.2 (3H, Triplet),          |  |  |  |
|     |            | 749 and 697                                         | and 257              | 7.0 (2H, Doublet)                                                 |  |  |  |
|     | b)         |                                                     |                      |                                                                   |  |  |  |



Page **2** of **5** 

04

## OR

## Q-6 Attempt all questions

a) Organic compound having molar mass 134.0 g/mole exhibit the following spectral data.
 05
 Deduced the structure of the compounds.

| IR $(cm^{-1})$     | UV ( $\lambda$ , nm) | <sup>1</sup> H-NMR (δ, ppm)                 |
|--------------------|----------------------|---------------------------------------------|
| 3031, 2941, 1725,  | 274                  | 7.6 (4H, Doublet), 6.18 (3H, Singlet), 3.25 |
| 1608, 1060 and 830 |                      | (3H, Singlet)                               |

b)

c)

04

05

(14)

**Important tables for calculations:** 

Tables for <sup>13</sup>C-NMR shift for hydrocarbon, Branched hydrocarbon, functional hydrocarbons and substituted benzene ring.

| 13C Atoms                     | Shift correction                              | <sup>13</sup> C Atoms                    | Shift correction<br>(ppm)    |
|-------------------------------|-----------------------------------------------|------------------------------------------|------------------------------|
| 1° (3°)<br>1° (4°)<br>2° (3°) | ( <b>ppm</b> )<br>-1.1<br>-3.4<br>-2.5<br>7.2 | 3° (2°)<br>3° (3°)<br>4° (1°)<br>4° (2°) | -3.7<br>-9.5<br>-1.5<br>-8.4 |



|                    | γο       | r        | r        | $\int \alpha \gamma$ |          |
|--------------------|----------|----------|----------|----------------------|----------|
|                    | ß        | s        | ßir      | ternal <sup>B</sup>  | <b>`</b> |
| Substituent        |          | x        |          | 3                    | Y        |
| S                  | terminal | internal | terminal | internal             |          |
| F                  | +68      | +63      | +9       | +6                   | -4       |
| CI                 | +31      | +32      | +11      | +10                  | -4       |
| Br                 | +20      | +25      | +11      | +10                  | -3       |
| 1                  | -6       | +4       | +11      | +12                  | 1        |
| CH <sub>3</sub>    | +9       | +6       | +10      | +8                   | -2       |
| CH=CH <sub>2</sub> | +20      |          | +6       | _                    | -0.5     |
| C=CH               | +4.5     |          | +5.5     |                      | -3.5     |
| COOH               | +21      | +16      | +3       | +2                   | -2       |
| COO-               | +25      | +20      | +5       | +3                   | -2       |
| COOR               | +20      | +17      | +3       | +2                   | -2       |
| COCI               | +33      | +28      | _        | +2                   |          |
| CONH <sub>2</sub>  | +22      | —        | +2.5     |                      | -0.5     |
| COR                | +30      | +24      | +1       | +1                   | -2       |
| сно                | +31      |          | 0        |                      | -2       |
| Phenyl             | +23      | +17      | +9       | +7                   | -2       |
| он                 | +48      | +41      | +10      | +8                   | -5       |
| OR                 | +58      | +51      | +8       | +5                   | _4       |
| OCOR               | +51      | +45      | +6       | +5                   | _3       |
| NH <sub>2</sub>    | +29      | +24      | +11      | +10                  | -5       |
| NHS                | +26      | +24      | +8       | +6                   | -5       |
| NHR                | +37      | +31      | +8       |                      |          |
| NR2                | +42      |          | 16       | +0                   | -4       |
| NRS                | +31      |          | +5       | _                    | -3       |
| NO <sub>2</sub>    | +63      |          | +3       |                      | -7       |
| CN                 | +4       | +37      | +4       | +4                   |          |
| SH                 |          | +1       | +3       | +3                   | -3       |
| -                  | +11      | +11      | +12      | +11                  | -4       |

 Table 5.3\* : Increments (ppm) for Substituents (S) On Replacement of H in Alkanes
 with a Substituent (S)

Data taken from F.W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR spectra. London. Heyden 1976.

•These corrections are to be made in the Shift value of a carbon calculated from eq. 1 Scheme 5.3 or eq. II Scheme 5.3 or in the Values of Table 5.1.

|                       | the second se | and the second se |      |                            |      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|------|
|                       | C—1                                                                                                             | C—2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C—3  | C4                         | C—5  |
| methane               | - 2.6                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                            |      |
| ethane                | 5.7                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                            |      |
| propane               | 15.8                                                                                                            | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.8 |                            |      |
| butane                | 13.4                                                                                                            | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2 | 13.4                       |      |
| pentane               | 13.9                                                                                                            | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.7 | 22.8                       | 13.9 |
| hexane                | 14.1                                                                                                            | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.2 | 32.2                       | 23.1 |
| heptane               | 14.1                                                                                                            | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.6 | 29.7                       | 32.6 |
| isobutane             | 24.5                                                                                                            | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                            |      |
| isopentane            | 22.2                                                                                                            | 31.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.0 | 11.7                       |      |
| neopentane            | 31.7                                                                                                            | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                            |      |
| 3-methylpentane       | 11.3                                                                                                            | 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.7 | (18.6, 3-CH <sub>3</sub> ) |      |
| 2,3-dimethylbutane    | 19.5                                                                                                            | 34.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                            |      |
| 2,2,3-trimethylbutane | 27.4                                                                                                            | 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.3 | 16.1                       |      |

Table 5.2 : <sup>13</sup>C Shifts for Selected Linear and Branched-Chain Alkanes (ppm from TMS)



394

| TA  | -  | 1. | HC. | A  | н. | 7  |            |     |         |       |        |
|-----|----|----|-----|----|----|----|------------|-----|---------|-------|--------|
| 110 | 51 | UB | ST  | IT | UE | NT | INCREMENTS | FOR | BENZENE | RINGS | (PPM)" |

| Substituent Y                      | a (ipso) | o (ortho) | m (meta) | p (para) |
|------------------------------------|----------|-----------|----------|----------|
| -CH,                               | 9.3      | 0.7       | -0.1     | -2.9     |
| -CH2CH3                            | 11.7     | -0.5      | o        | -2.6     |
| -CH(CH <sub>2</sub> ) <sub>3</sub> | 20.1     | -2.0      | -0.3     | -2.5     |
| -C(CH.)                            | 18.6     | -3.4      | -0.4     | ~3.1     |
| -CH-CH.                            | 9.1      | -2.4      | 0.2      | -0.5     |
| ~-C=CH                             | -6.2     | 3.6       | -0.4     | -0.3     |
| -CoHo                              | 8.1      | -1.1      | -0.5     | -1.1     |
| -CHO                               | 8.2      | 1.2       | 0.6      | 5.8      |
| -COCH.                             | 8.9      | -0.1      | -0.1     | 4.4      |
| -COC-H-                            | 9.1      | 1.5       | -0.2     | 3.8      |
| -COOH                              | 2.1      | 1.6       | -0.1     | 5.2      |
| -COOCH,                            | 2.0      | 1.2       | -O.1     | 4.3      |
| -CN                                | -16.0    | 3.6       | 0.6      | 4.3      |
| -NH                                | 18.2     | -13.4     | 0.8      | -10.0    |
| -N(CH <sub>2</sub> )-              | 16.0     | -15.7     | 0.8      | -10.5    |
| -NHCOCH                            | 9.7      | -8.1      | 0.2      | -4.4     |
| -NO2                               | 19.6     | -4.9      | 0.9      | 6.0      |
| -OH                                | 28.8     | -12.7     | 1.6      | -7.3     |
| -OCH,                              | 33.5     | -14.4     | 1.0      | -7.7     |
| -OCOCH,                            | 22.4     | -7.1      | -0.4     | -3.2     |
| ~F                                 | 33.6     | -13.0     | 1.6      | -4.5     |
|                                    | 5.3      | 0.4       | 1.4      | -1.9     |
| -Br                                | -5.4     | 3.4       | 2.2      | -1.0     |
| -1                                 | -31.2    | 8.9       | 1.6      | -1.1     |

"Add these increments to the base value for benzene-ring carbons (128.5 ppm).

| C SOBSTITUET       |         |                         |                  |           |                                                              |      |  |  |  |  |  |
|--------------------|---------|-------------------------|------------------|-----------|--------------------------------------------------------------|------|--|--|--|--|--|
|                    | Termino | al: Y−C <sub>α</sub> −C | g-C <sub>r</sub> | Internal: | Internal: $C_{\gamma} - C_{\beta} - C_{\alpha} - C_{\alpha}$ |      |  |  |  |  |  |
| Substituent Y      | α       | β                       | γ                | α         | β                                                            | r    |  |  |  |  |  |
| D                  | -0.4    | -0.1                    | 0                |           |                                                              |      |  |  |  |  |  |
| -CH <sub>3</sub>   | 9       | 10                      | -2               | 6         | 8                                                            | -2   |  |  |  |  |  |
| $-CH=CH_2$         | 19.5    | 6.9                     | -2.1             |           |                                                              | -0.5 |  |  |  |  |  |
| -C=CH              | 4.5     | 5.4                     | -3.5             |           |                                                              | -3.5 |  |  |  |  |  |
| $-C_6H_5$          | 22.1    | 9.3                     | -2.6             | 17        | 7                                                            | -2   |  |  |  |  |  |
| -сно               | 29.9    | -0.6                    | -2.7             |           |                                                              |      |  |  |  |  |  |
| -COCH <sub>3</sub> | 30      | 1                       | -2               | 24        | 1                                                            | -2   |  |  |  |  |  |
| -COOH              | 20.1    | 2                       | -2.8             | 16        | 2                                                            | -2   |  |  |  |  |  |
| COOR               | 22.6    | 2                       | -2.8             | 17        | 2                                                            | -2   |  |  |  |  |  |
| $-CONH_2$          | 22      | 2.5                     | -3.2             |           |                                                              | -0.5 |  |  |  |  |  |
| -CN                | 3.1     | 2.4                     | -3.3             | 1         | 3                                                            | -3   |  |  |  |  |  |
| $-NH_2$            | 29      | 11                      | -5               | 24        | 10                                                           | -5   |  |  |  |  |  |
| -NHR               | 37      | 8                       | -4               | 31        | 6                                                            | -4   |  |  |  |  |  |
| $-NR_2$            | 42      | 6                       | -3               |           |                                                              | -3   |  |  |  |  |  |
| $-NO_2$            | 61.6    | 3.1                     | -4.6             | 57        | 4                                                            |      |  |  |  |  |  |
| -он                | 48      | 10                      | -6.2             | 41        | 8                                                            | -5   |  |  |  |  |  |
| -OR                | 58      | 8                       | -4               | 51        | 5                                                            | -4   |  |  |  |  |  |
| $-OCOCH_3$         | 56.5    | 6.5                     | -6.0             | 45        | 5                                                            | -3   |  |  |  |  |  |
| -F                 | 70.1    | 7.8                     | -6.8             | 63        | 6                                                            | _1   |  |  |  |  |  |
|                    | 31      | 10                      | -5.1             | 32        | 10                                                           | -4   |  |  |  |  |  |
| -Br                | 20      | 11                      | -3               | 25        | 10                                                           | -4   |  |  |  |  |  |
| - <b>I</b>         | -7.2    | 10.9                    | -1.5             | 4         | 12                                                           | 3    |  |  |  |  |  |

#### THE SUBSTITUENT INCREMENTS FOR ALKANES AND CYCLOALKANES (PPM)\*

"Add these increments to the values given in Table A8.1.

L

